

XXVème Rencontres du Club Jeune SFSM 2021

Fourier Transform Mass Spectrometry: Fundamentals and Data Processing

Yury Tsybin tsybin@spectroswiss.ch

Spectroswiss Lausanne, Switzerland

FTMS: Fundamentals and Data Processing

- I. FTMS Fundamentals: General
- II. FT-ICR MS / MRMS: Principles of Operation
- III. Orbitrap FTMS: Principles of Operation
- IV. FTMS Data Processing

FTMS: Fundamentals and Data Processing

I. FTMS Fundamentals: General

II. FT-ICR MS / MRMS: Principles of Operation

III. Orbitrap FTMS: Principles of Operation

IV. FTMS Data Processing

Fourier Transform Mass Spectrometry: **FTMS**

ICR: ion cyclotron resonance

MRMS: magnetic resonance MS

Orbitraps Electrostatic ion traps

FTMS Principles

- Ion identity (m/z) is encoded as a frequency of ion oscillations in an ion trap
- Frequencies of ion oscillations are measured as time-domain signals (transients)
- Fourier transform (FT) decodes transients to reveal frequencies (m/z) values ullet

Electrostatic field-based Orbitrap $\omega \approx$

Magnetic field-based

Ion Cyclotron Resonance (ICR) **Magnetic Resonance MS (MRMS)**

Orbitrap[™] families: LTQ Orbitrap; Exactive; Q Exactive; Exploris; Fusion; Lumos; Eclipse

From Ion Oscillations to Ion Signals: FT-ICR MS

From Ion Oscillations to Ion Signals: **Orbitrap FTMS**

Fourier Transform (FT): From Transients to Frequencies

- General information on FT processing:
 - https://www.youtube.com/watch?v=spUNpyF58BY ullet
- Magnitude FT (**mFT**): basic and most common approach
 - all FT-ICR MS / MRMS and earlier Orbitraps (up to and including LTQ Orbitrap Velos)
 - Data processing in FTMS: O'Connor et al., Mass Spectrom. Reviews (2014) 33:333
- Enhanced FT (**eFT**): a combination of mFT (peak bottom) and aFT (peak top)
 - all Orbitraps starting with LTQ Orbitrap Elite (Makarov et al., IJMS (2014) 369, 16-22)
- Absorption FT (**aFT**): doubles mFT resolution, information equal to transients
 - post-processing of transients (*e.g.*, with AutoVectis, see <u>www.kilgourlab.com</u>) \bullet
 - in-hardware via acquisition of phased transients (*e.g.*, DOI: 10.1021/jasms.9b00032) ۲

Frequency - *m*/*z* Relationships: Calibration

ESI	● ॐ 🕂 ♦	Orhitra	n		
lons, m/z		Urbitra	ρ		FT
	→		f , 1	kHz	
S	106	Γ	k 1413	1738	
SF	253	$\omega \approx \left \frac{1}{r} \right $	<u>n / 915</u>	728	
SFS	340	\mathcal{N}	<i>¹/_Z</i> 789	542	
SFSM	471		670	391	
•	What is <i>k</i>	(?	@ QE HF	@ 12 T	

Ion oscillation frequency reduces FASTER for ICR compared to Orbitrap

-ICR MS / MRMS

$\omega \approx \frac{1}{m_{/z}}$

- $R \sim T$ Resolution increases linearly with transient length (detection period)
- $S/N \sim \sqrt{T}$ Sensitivity increases as a sqrt of transient length (detection period)

 $S/N \sim z$

• Peak intensities are directly proportional to the charge state of the ions

 $S/N(t) \sim z$ Peak intensity increase in time is proportional to the ion's charge state Individual ion counting (charge detection FTMS): DOI: 10.1038/s41592-020-0764-5

S/N = signal/noise

FTMS Analytical Characteristics

- the highest resolution
- the highest mass accuracy

induced current ion detection (transients)

ABUNDANCE ACCURACY

MASS ACCURACY

(Some) Key Applications of FTMS

ICR / MRMS

- **Ultra-high** performance
- **High space-charge** tolerance
- Ion detection & transformation

Imaging

Complex mixture analysis

Structural biology: top-down analysis

C.04: Frédéric Aubriet

Orbitraps

Metabolomics

Bottom-up proteomics

High performance

- **Ion detection (only)**
- **Extremely versatile**
- **On-line LC/GC/...**
- Easy to use (!)

C.02: Sophie Ayciriex O.12: Maroussia Parailloux

BioPharma (MAM & top-down)

Clinical/ Toxicology

Protein complexes/viruses: single ion counting (CDMS) Elemental analysis, isotopic ratio analysis Imaging, (medium) complex mixtures analysis, ...

Basic science

Environmental & Food safety

Pharma metabolite **ID**/profiling

12

FTMS: Fundamentals and Data Processing

I. FTMS Fundamentals: General

II. FT-ICR MS / MRMS: Principles of Operation

III. Orbitrap FTMS: Principles of Operation

IV. FTMS Data Processing

FT-ICR MS Concept: Ion Cyclotron Frequency

$\omega_{\rm c} = \frac{q}{m} B$

cyclotron frequency

Marshall et al., Mass Spectrometry Reviews (1998) 17:1-35

14

Spectroswiss

reducedmagnetroncyclotron(drift)frequencyfrequency

Dipolar ion excitation (RF at cyclotron frequency): E1 and E2 electrodes

Dipolar ion detection: D1 and D2 electrodes

DOI: 10.1002/mas.21681

16

Ion Detection: a Quadratic Trapping Potential

Ion Detection: a **Non-Quadratic** Trapping Potential

Ion packet injection Ion trapping (on-axis) Ion excitation to a higher radius: an RF field & sidekick (distributed ions) Ion detection (induced ion current) Quench of ions (ion ejection)

Nagornov et al., JASMS (2020) 31, 2258-2269

What Frequency Do We Measure?

NADEL ICR cells distributed ions

DOI: 10.1002/mas.21681

Idealistic (well tuned) FT-ICR MS / MRMS

Conventional FT-ICR MS / MRMS compact clouds

DOI: 10.1002/mas.21681

How Many FT-ICR MS / MRMS Are Out There?

solariX MRMS

"The workhorse platform for high-field MRMS work at 12T or 15T – useful for ultra-complex mixture analysis such as petroleomics and dissolved organic materials."

technology, bringing the "high hanging fruit" within easy reach"

https://www.bruker.com/en/products-and-solutions/mass-spectrometry/mrms.html

scimaX MRMS

"scimaX® is powered by 2xR MRMS"

21

MRMS Instrument Specifications

	7T solariX	12T solariX	15T solariX	7T scimaX
Maximum resolving power	>10 M	>10 M	>10 M	>20 M
Mass accuracy (internal)	600 ppb	300 ppb	250 ppb	600 ppb
ESI ion source	yes	yes	yes	yes
MALDI ion source	optional	optional	optional	yes
ETD MS/MS	optional	optional	optional	yes
Detector	ParaCell XR or 2xR	ParaCell XR	ParaCell XR	ParaCell 2xR
Magnetic field	7 T	12 T	15 T	7 T cc
Annual cryogen fill	yes	yes	yes	no
Quench line required	yes	yes	yes	no

- 2xR: ion detection at the second **frequency multiple** (double frequency)
- "cc" magnet: "cryogen-free" magnet

Bruce et al., IJMS (2021) DOI: 10.1016/j.ijms.2021.116578 Nagornov et al., Anal. Chem. (2014) 86, 18, 9020-9028

FTMS: Fundamentals and Data Processing

I. FTMS Fundamentals: General

II. FT-ICR MS / MRMS: Principles of Operation

III. Orbitrap FTMS: Principles of Operation

IV. FTMS Data Processing

The Two Orbitrap Models: D30 and D20

Alexander Makarov

Makarov, Anal. Chem. (2000) 72, 1156

D30 Orbitrap (Regular)

3.5 kV; 5 kV

Makarov et al., JASMS, (2009) 20, 1391-1396

D20 Orbitrap (Compact)

3.5 kV; 4 kV; 5 kV

Ion Oscillation Frequency in Orbitraps

$$f = \frac{1}{2\pi}\omega = \frac{1}{2\pi} \sqrt{\frac{e/u}{(m/z)} \cdot \frac{2 \cdot [V]}{R_m^2 \cdot \ln\left(\frac{R_2}{R_1}\right) - \frac{1}{2}[R_m^2]}}$$

where e is the elementary charge, u is the unified atomic mass unit, V is the central electrode voltage, R_1 and R_2 are the circumscribed radius of the central electrode and the inscribed radius of the outer electrode in the central plane, respectively. The R_m is the characteristic radius, which is usually set close to $R_m = R_2\sqrt{2}$ in order to meet the ion trapping condition. For the regular, D30, Orbitrap geometry: $R_1 = 6 mm$, $R_2 = 15 mm$, $R_m = 21.2 mm$, and thus $ln\left(\frac{R_2}{R_1}\right) = 0.91$. Corresponding scaling down in size for the compact, D20, Orbitrap results in the

following parameters: $R_1 = 5 mm$, $R_2 = 10 mm$, $R_m = 14.1 mm$, and t

• What is *k*?
$$\omega \approx \sqrt{\frac{k}{m_{/z}}}$$

$R_2^2 - R_1^2$]

thus
$$ln\left(\frac{R_2}{R_1}\right) = 0.69$$
.

Makarov, A., Denisov, E., Lange, O., JASMS, 20 (2009) 1391-1396 Tsybin et al. "Advanced FTMS Fundamentals", Chapter 5

Regular (D30) vs. Compact (D20) Orbitrap

For signals at the equal frequencies:

$$\frac{(m/z)_{D20}}{(m/z)_{D30}} = \frac{\left(R_m^2 \cdot \ln\left(\frac{R_2}{R_1}\right) - \frac{1}{2}[R_2^2 - R_1^2]\right)_{D30}}{\left(R_m^2 \cdot \ln\left(\frac{R_2}{R_1}\right) - \frac{1}{2}[R_2^2 - R_1^2]\right)_{D20}}$$

Makarov, A., Denisov, E., Lange, O., JASMS, 20 (2009) 1391-1396 Tsybin *et al. "Advanced FTMS Fundamentals", Chapter 5*

Orbitrap Technology Concepts

- 1. Ion Excitation by Injection (electrodynamic squeezing)
- 2. Maximum injection time (**ITmax**)
- 3. Automatic Gain Control (AGC)
- 4. Normalized level (NL)
- 5. Enhanced Fourier transform (**eFT**)
- 6. Parallel ion detection and accumulation/fragmentation
- 7. Microscans: transient averaging
- 8. Scans: spectral averaging
- 9. Mass spectra: full & reduced profile, centroids

How Many Orbitraps Are Out There?

Exploris 480

ThermoFisher S C I E N T I F I C

Q Exactive Q Exactive HF

LTQ Orbitrap XL LTQ Orbitrap Velos LTQ Orbitrap Elite

Exploris 120

Exploris 240

Hybrid Orbitrap: Exploris

Electrodynamic Ion Funnel

240

Tribrid Orbitrap: Eclipse

Orbitrap Figures of Merit: 2021

Analytical	Orbitr	ap Model			
Characteristic	Exploris 480 (QE)	Eclipse (Fusion)			
Mass range	<i>m/z</i> 40 -6000	<i>m/z</i> 50-2000			
Frequencies	2 MHz – 168 kHz	2 MHz – 325 kHz			
Spindel potential	4 kV	5 kV			
Extended range	up to 8000 <i>m/z</i> with BioPharma option				
Resolution	7500 to 480,000 (500,000) at <i>m/z</i> 200				
Transients	from 16 m	s to 1 second			
Ultra-high Res	(with external DAQ)	1 million @ <i>m/z</i> 200			
Scan speed	up to 40 Hz at resolution 7500 at <i>m/z</i> 200				
Dynamic range	>5000 within a single OT mass spectrum				
Mass accuracy	<3 ppm RMS using external calibration <1 ppm RMS using internal calibration				

FTMS: Fundamentals and Data Processing

- I. FTMS Fundamentals: General
- II. FT-ICR MS / MRMS: Principles of Operation
- III. Orbitrap FTMS: Principles of Operation

IV. FTMS Data Processing

FTMS Quiz: http://spectroswiss.ch/quiz/

FTMS Working Problems March 2021 updated

FTMS Working Problems

والمتحافظ ومحافظ والمحار والمحاد

والمتحدين والاعاليان ومعدمان إمريته ومنوعاته ومعاوين والكرج بمطالعان وتدويته والمتنوع والمتحاص والمتح

Version: March 2021

Click here to start

00:03

FTMS Data Processing: Step by Step

DOI: 10.1021/jasms.0c00190

FTMS Isotopic Simulator: SFSM Peptide Analysis

18: FTMS Isotopic Simulator 19: Deconvolution 20: Mass fine correction settings	
Show: 🗸 Settings 🗸 Plots Tables Exp. data	
Status: Idle	
Isotopic settings Targeted search Semi-targeted search Advanced parameters	Mass Spectrum Transient Theor. vs Exp. centroids
○ Formula (neutral):	
Sequence: SFSM Frequency, Hz: 1028950	Vormalize to: base peak of C
Modification(s)	Metadata Keep scale Spectrum: Backward Forward Frequencies
O Biopharma tool No project	
Compound settings	471.190687 R=12.2 k
Teotonic nattern engine: Default	
Remove / append ion: positive	171.10 m/z
Radical ion? even-electron species	4/1.13/1//Z
Charge state: from: 1 🔷 to: 1	
Isotopologue rank: from: 1 to: 7	R = 12.2 K
Abund. threshold, %: pattern: 0.00100 profile: 0.0100	
✓ FT settings	
Instrument / harmonic #: Orbitrap QEx TM	~
Resolution: At target peak(s) 60000 \$	
Instrument setting I7.5k@200m/z	
O Detection period, s	
FT mode / apodization: absorption semikaiser	tive
Zero-fills / sample rate: 2 VHz	
Noise / decay / phase: 0.000 ♀ 0.00 ♀ 0.0 ♀	40 -
Add Compound Conserva from File Example of File	
Compound list: select one or multiple items (hold Ctrl to include/remove individual items or Shift for a range)	472.193657
Remove Selected Remove All Save project Load project Export PDF report	20 -
1. 1.0	
	470 471 472 473
	m/z
	Step 3/3: 100%

SFSM peptide analysis with FTMS: transient

18: FTMS Isotopic Simulator 19: Deconvolution 20: Mass fine correction setting

Tables Exp. data Plots

Status: Idl

Isotopic settings Targe	ted search	Semi-targeted s	earch	Advance	ed parameters		Mass Spectrum	Transient	Theor. vs Exp. centroi
○ Formula (neutral):		• 0	Mass (m	n/z):	2000				
Sequence:	SFSM	• •	Frequen	cy, Hz:	1000000		-		
Modification(s)			Enrich is	otopes:	Natural abundance	es 💌	Show Apodize	d	
Biopharma tool	No project			•		•	a de la companya de la	4	
✓ Compound settings									
								1 1	- A - A
Isotopic pattern eng	ine: Default		*	profile		•			
Remove / append io	n: positive		*	appen	d H+	•			
	Radi	ical ion?		even-ele	ectron species		100 -	╡┠╴┛	
Charge state:	from:	1	-	to:	1	\$			\mathbf{v} \mathbf{v} \mathbf{v}
Isotopologue rank:	from:	1	*	to:	7	\$			• • •
Abund. threshold, %	: pattern:	0.00100	\$	profile:	0.0100	\$			
✓ FT settings								-	
Instrument / harmo	nic #: Orbitra	ap QEx™	•] [1		\$			
Resolution:	At	target peak(s)		60000		-	i.		
) Ins	trument setting		17.5k@	200m/z	•	e, a		
	O Det	ection period, s		0.500		-	litud		
FT mode / apodizatio	absorp	ition	•	semika	aiser	•	dmy		
Zero-fills / sample ra Noise / decay / pha	ite: 2 se: 0.000	\$	•	2 MHz	€ 0.0	▼	1		
Add Compound		Generate from	n File		Example of Fi	e			
Remove Selected Remove 1. 1.0	ove All Sav	(hold Ctrl to includ e project Load p)], z=+1, DBE=8.0	e/remov	e individu Pi Export PI isk@200m,	al items or Shift fo DF JF report /z, Orbitrap QEx™,	r a range) absorption(s	-100 -		
								U	U

SFSM peptide analysis with FTMS: frequency

TMS Isotopic Simulator 19: Deconvolution 20: Mass fine correction settings	
w: 🗸 Settings 🗸 Plots 🗌 Tables 🗌 Exp. data	
Status: Idle	
Isotopic settings Targeted search Semi-targeted search Advanced parameters	Mass Spectrum Transient Theor. vs Exp. centroids
○ Formula (neutral):	
Sequence: SFSM Frequency, Hz: 1000000	Normalize to: base peak of (
Modification(s)	Metadata Keep scale spectrum: Backward Forward Frequencies
O Biopharma tool No project	4
Compound settings	100 -
Isotopic pattern engine: Default	
Remove / append ion: voitive v	379606.76 Hz
Radical ion? even-electron species	
Charge state: from: 1 to: 1	R = 24.3 k
Abund threshold %- nattern: 0.00100	
✓ FT settings	
Instrument / harmonic #: Orbitrap QEx™ ▼ 1	8
Resolution: At target peak(s)	
Instrument setting 17.5k@200m/z	
FT mode / apodization: absorption	
Zero-fills / sample rate: 2 v 2 MHz v	
Noise / decay / phase: 0.000 \$ 0.00 \$ 0.0 \$	40 -
Add Compound Generate from File Example of File	
ompound list: select one or multiple items (hold Ctrl to include/remove individual items or Shift for a range)	
Remove Selected Remove All Save project Load project Export PDF report	20 -
1. 1.0	
	378803.527144 R=23.8 k
	377837.70326
	3.77e+05 3.78e+05 3.79e+05 Frequency, Hz
	Step 3/3: 100%

SFSM peptide analysis with FTMS: *m/z*

FTMS Isotopic Simulator 19: Deconvolution 20: Mass fine correction settings	
how: 🗸 Settings 🗸 Plots 🗌 Tables 📄 Exp. data	
Status: Idle	Mass Shectrum Transiant Theor vs Eve controlds
Lotopic settings Targeted search Senin-targeted search Advanced parameters	
Formula (neutral): Mass (m/z): 6000	
Modification(s)	Image: Normalize to: Zoom Zoom Fill Normalize to: base peak of (<
O Biopharma tool No project	
Compound settings	471.190687 R=12.2 k
Isotopic pattern engine: Default profile Permane (append international appendix	monoisot
Remove / append ion: positive append H+	
Charge state: from: 1 to: 1	neak
Isotopologue rank: from: 1 to: 7	80-
Abund. threshold, %: pattern: 0.00100 \$ profile: 0.0100 \$	
Instrument / harmonic #: Orbitrap QEx TM	× 60 −
At target peak(s)	
Detection period, s	
FT mode / apodization: absorption	
Zero-fills / sample rate: 2 VHz V	
Noise / decay / phase: 0.000 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 – $\Delta + 1$
Add Compound Generate from File Example of File	
Compound list: select one or multiple items (hold Ctrl to include/remove individual items or Shift for a range)	472.193657
	N-12.5 X
Remove Selected Remove All Save project Load project Export PDF report	
1. 1.0	ATZ
	470 471 472 473
	m/z
	Step 3/3: 100%

SFSM peptide analysis with FTMS: *m/z*

atus: Idle	
Isotopic settings Targeted search Semi-targeted search Advanced parameters	Mass Spectrum Transient Theor. vs Exp. centroids
Formula (neutral): Mass (m/z): 2000 Sequence: SFSM Frequency, Hz: 1000000 Modification(s) Enrich isotopes: Natural abundances 	Metadata Keep scale Zoom Rectrum: Rectrum: Backward Forward Frequencies Normalize to: Dase peak of C
Biopharma tool No project	
	A+2
Remove / append ion: positive append H+	
Radical ion? even-electron species Charge state: from: 1 Isotopologue rank: from: 1	isotopologue centr
Abund. threshold, %: pattern: 0.00100 🗘 profile: 0.0100 🗘	
✓ FT settings Instrument / harmonic #: Orbitrap QEX [™] 1 Resolution: At target peak(s) 60000	$34S_1$
	A - A - A - A - A - A - A - A - A - A -
Add Compound Generate from File Example of File	³
Compound list: select one or multiple items (hold Ctrl to include/remove individual items or Shift for a range)	
1. 1.0 + [H31 C20 N4 O7 S (-1e)], z=+1, DBE=8.0, R=17.5k@200m/z, Orbitrap QEX ^{***} , absorption(s	
	0 <u>R=35.8 k</u> 472.09 473.1 473.12 473.14 473.15 473.19 473.2 473.23 473.23
	475.06 475.1 475.12 475.14 475.10 475.16 475.2 475.22 475.24
A b	475.06 475.1 475.12 475.14 475.10 475.16 475.2 475.22 475.24 m/z

otopic settings Targeted	search Sen	ni-targeted searc	h	Advanc	ed paramete	ers	
Formula (neutral):			s (m	/z):	6000		
Sequence: SFS	м	Free	quen	cy, Hz:	1028950		
Modification(s)		Enri	ch is	otopes:	Natural abo	undances	
Biopharma tool	oroject						
Compound settings							
Isotopic pattern engine	Default		•	profile			•
Remove / append ion:	positive		•	apper	nd H+		
	Radical id	on?		even-el	ectron speci	es	
Charge state:	from:	1	-	to:	t	L	*
Isotopologue rank:	from:	1	-	to:	7	7	\$
Abund. threshold, %:	pattern:	0.00100	\$	profile:		0.0100	4
Instrument / harmonic :	#: Orbitrap QE	X [™]	•	1			\$
Resolution:	 At target peak(s) 		60000		÷		
	Instrume	ent setting		17.5k	@200m/z		•
	O Detection	n period, s		0.032			
FI mode / apodization:	absorption		-		aiser		-
Noise / decay / phase:	0.000	\$ 0.00		2 19112			\$
	Ge	enerate from File	2		Examp	le of File	
Add Compound							
Add Compound	iple items (hold	Ctrl to include/re	emov	e individi	ual items or :	Shift for a	range
Add Compound	iple items (hold	Ctrl to include/re	emov	e individu	DF	Shift for a	range

Compound definition:

- elemental composition
- amino acid sequence
- mass (m/z) or frequency value

lon (charged compound) definition:

- Charge carrier: electron, H⁺, K⁺, Na⁺, Cs⁺, I⁻, HCOO⁻
- Ionization mode: positive, negative, or a neutral species
- Charge state: from the lowest to the highest
- Isotopologues: how many and which ones

FT processing settings:

- FTMS instrument and model: ICR/MRMS, Orbitraps
- Harmonics order: which harmonic to calculate \bullet
- Resolution: at target peak, instrument setting, transient length •
- FT mode: absorption or magnitude •
- Apodization window: none, full (Kaiser), half (semi Kaiser)
- Number of zero fills: 0, 1, 2, or 3
- Sampling rate (digitization frequency): 1, 2, 4, or 6 MHz, or any
- Noise (added to the transient): noise amplitude
- Decay rate: ion signal decay rate in a transient, e^{-(decay rate)}
- Phase: initial phase (angle) of ion detection in a transient

FT Processing Settings: Frequency

Orbitrap models: <u>https://planetorbitrap.com/</u>

LTQ-FT 7T™
LTQ-FT 21T
FT-ICR 7T
FT-ICR 9.4T
FT-ICR 10T
FT-ICR 12T
FT-ICR 15T
Orbitrap Classic™
Orbitrap XL™
Orbitrap Velos™
Orbitrap Elite™
Orbitrap QEx™
Orbitrap QExF™
Orbitrap QExUHMR™
Orbitrap Exploris™
Orbitrap QExHF™
Orbitrap Fusion™

- Orbitrap resolution settings are typically estimated at *m*/z 200 (eFT mode)
- The original LTQ Orbitrap models estimate resolution at *m*/*z* 400 (mFT or eFT)

on 200 (eFT mode) 1/z 400 (mFT or eFT)

	\$
	\$
00m/z	
m/z	
m/z	
0m/z	
0m/z	
0.0	T
	-T /

Resolution = *f* (transient period)

	Resolution @ 2	00 <i>m/z</i> (eFT mass spec	z (eFT mass spectra, 5 kV potential)				
Iransient length, ms	Q Exactive (Plus, Focus, UHMR): D30	Q Exactive HF (GC): D20	Fusion (Lumos, ID-X, Eclipse): <mark>D20</mark>				
16	_	7,500 (only Exploris)	7,500 (only Eclipse)				
32	-	15,000	15,000				
64	17,500	30,000	30,000				
128	35,000	60,000	60,000				
256	70,000	120,000	120,000				
512	140,000	240,000	240,000				
1,024	280,000 (only QEx+)	480,000 (only Exploris)	500,000				
2,048	-	_	1000,000 (only 1M)				

$R \approx f \cdot T$

Resolution = *f* (transient period)

	Resolution @ 400 <i>m/z</i>					
Iransient length, ms	LTQ Orbitrap XL/Velos (mFT, 3.5 kV): D30	LTQ Orbitrap Elite (eFT, 3.5 kV): <mark>D20</mark>	Compact, high-field (eFT, 5 kV): <mark>D20</mark>			
48	-	15,000	18,000			
96	7,500	30,000	35,500			
192	15,000	60,000	71,000			
384	30,000	120,000	142,000			
768	60,000	240,000	282,000			
1536	100,000	480,000	560,000			
3072	-	1 M	1100,000			

$R \approx f \cdot T$

Resolution = function of frequency or m/z200% ---7T LTQ FT $\propto \frac{1}{m/z}$ 180% —18T FT ICR $R \propto f \cdot T$ Compact Orbitrap 5kV 160% 140% **Resolving power** $f_{ICR} \propto \frac{1}{m/z}$ 120% 100% 80% \propto -60% $\sqrt{m/z}$ $f_{Orbitrap} \propto \frac{-}{\sqrt{m/z}}$ 40% 20% 0% 100 1000 10000

m/z, Th

Resolution: ICR vs. Orbitrap

$$R = \frac{(m/z)}{\Delta(m/z)}$$
$$R = \frac{f}{\Delta(m/z)}$$

$$f_{ICR} = \frac{A}{(m/z)}$$

 $f_{Orbitrap}^2 = \frac{A}{(m/z)}$

$$(m/z) = \frac{A}{f}$$

$$\Delta(m/z) \approx -\frac{A \cdot \Delta f}{f^2} = -(m/z) \cdot \frac{\Delta f}{f} \qquad \Delta(m/z) \approx -2\frac{A \cdot \Delta f}{f^3} =$$

Tsybin et al. "Advanced FTMS Fundamentals", Chapter 5

 $R_{Orbitrap} \approx \frac{(m/z)}{\Delta(m/z)} = \frac{1}{2} \frac{f}{\Delta f}$

 $(m/z) = \frac{A}{f^2}$

 $-2(m/z)\cdot\frac{\Delta f}{f}$

Resolution = Function of *m*/*z*

Tsybin et al. "Advanced FTMS Fundamentals", Chapter 5

Resolution = Function of m/z

• LTQ FT ICR MS resolution settings are estimated at *m/z* 400 (mFT mode)

✓ FT settings		
Instrument / harmonic #:	LTQ-FT 7T™ ▼	1
Resolution:	At target peak(s)	60000
	Instrument setting	12.5k@400m/z (T=
	 Detection period, s 	25k@400m/z (T=0.
FT mode / apodization:	magnitude 🔹	50k@400m/z (T=0
Zero-fills / sample rate:	2	100k@400m/z (T=
Noise / decay / nhase:		200k@400m/z (T=
noise / decay / phase.	0.000	400k@400m/z (T=
		750k@400m/z (T=
Add Compound	Generate from File	1M@400m/z (T=12
\		2M@400m/z (T=24

on 400 (mFT mode)

	\$
	\$
=0.096 s)	
).192 s)	
).384 s)	
:0.768 s)	
1.536 s)	
:3.072 s)	
:6.144 s)	
2.288 s)	
4.576 s)	

- How to estimate transient length on **Bruker's** ICRs/MRMS?
- Example:

Science of the Total Environment 662 (2019) 852–862

Petroleomic depth profiling of Staten Island salt marsh soil: 2ω detection FTICR MS offers a new solution for the analysis of environmental contaminants

Mary J. Thomas ^{a,b}, Emma Collinge ^b, Matthias Witt ^c, Diana Catalina Palacio Lozano ^{b,d}, Christopher H. Vane ^e, Vicky Moss-Hayes^e, Mark P. Barrow^{b,*}

«Mass spectra were acquired with a 12 T solariX FT-ICR MS. The 4 MW datasets were acquired using magnitude mode, with a detection range of m/z 98 – 3,000. The data were zero-filled once and apodized using a Sine-Bell function prior to applying a fast Fourier transform (FFT). For the apodized data, the measured resolving power at m/z 200 was 650,000.» What was the length of the acquired transients?

$$T_{acq}(s) = \frac{N (dataset size, MW)}{f_{sampling}, MHz} = \frac{Number of aquired of aquired of acceleration of the states and the states the$$

data points sampled per s

$= 1\,880\,340\,Hz$

MW = 1.06 s88 MHz

ironment (2019) 662, 852-862

«Mass spectra were acquired with a 7 T solariX 2xR FT-ICR MS. The 2 MW datasets were acquired using magnitude mode, with a detection range of *m/z* 107 – 3,000. A 2ω (quadrupolar) ion detection was used. The data were zero-filled once and apodized using a Sine-Bell function prior to applying a fast Fourier transform (FFT). For the apodized data, the measured resolving power at m/z 200 was 300,000.»

What was the length of the acquired transients?

$$1\omega \ f_{@7T@107m/z} = 1\ 003\ 773\ \text{Hz} \qquad T_{acq} = \frac{2\ \text{M}}{2 \times 1.0}$$
$$2\omega \ f_{@7T@107m/z} = 2\ 007\ 547\ \text{Hz} \qquad T_{acq} = \frac{2\ \text{M}}{2 \times 2.00}$$

Barrow et al., Science of the Total Environment (2019) 662, 852-862

- ИW
- = 1 s04 MHz
- W = 0.5 s

otopic settings Targeted se	earch Semi-targeted search		Advanc	ed paramet	ters		
Formula (neutral):		Mass	s (m	/z):	6000		
Sequence: SFSM	Freque		ueno	cy, Hz:	Hz: 1028950		
Modification(s)			h is	otopes:	Natural abundances		-
Biopharma tool	oject						
Compound settings							
Isotopic pattern engine:	Default		•	profile			•
Remove / append ion:	positive		•	appen	d H+		•
	Radical ion?			even-el	ectron spec	ies	
Charge state:	from:	1	-	to:	[1	\$
Isotopologue rank:	from:	1	*	to: profile:		7	\$
Abund. threshold, %:	pattern:	0.00100	\$				\$
Instrument / harmonic #:	Orbitrap QEx™		•	1			\$
Resolution:	 At target peak(s) 		60000		-		
	Instrument s	setting		17.5k@	@200m/z		•
	O Detection pe	riod, s		0.032			-
FI mode / apodization:	absorption		-		aiser		• •
Noise / decay / phase:	0.000	\$ 0.00		2 1112	\$ 0.0		\$
Add Compound	Gener	ate from File			Examj	ple of File	
					ual items or	Shift for :	a rang
pound list: select one or multip	le items (hold Ctrl	to include/rer	nove	e individu		Shire for a	a rang
pound list: select one or multip	le items (hold Ctrl	to include/rer	nove		DF	Shirt for a	a rang

Compound definition:

- elemental composition
- amino acid sequence
- mass (m/z) or frequency value

lon (charged compound) definition: Charge carrier: electron, H⁺, K⁺, Na⁺, Cs⁺, I⁻, HCOO⁻ Ionization mode: positive, negative, or a neutral species Charge state: from the lowest to the highest Isotopologues: how many and which ones

FT processing settings:

- FTMS instrument and model: ICR/MRMS, Orbitraps •
- Harmonics order: which harmonic to calculate \bullet
- Resolution: at target peak, instrument setting, transient length •
- FT mode: absorption or magnitude •
- Apodization window: none, full (Kaiser), half (semi Kaiser)
- Number of zero fills: 0, 1, 2, or 3
- Sampling rate (digitization frequency): 1, 2, 4, or 6 MHz, or any
- Noise (added to the transient): noise amplitude
- Decay rate: ion signal decay rate in a transient, e^{-(decay rate)}
- Phase: initial phase (angle) of ion detection in a transient

FTMS Fundamentals and Data Processing Suggested Reading

- Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrometry Reviews (1998) 17:1-35
- Fourier Transform Mass Spectrometry. Molecular & Cellular Proteomics (2011) 10:M111.009431 •
- Advanced fundamentals in Fourier transform mass spectrometry. Chapter 5. DOI: 10.1016/B978-0-12-814013-0.00005-3 •
- Data processing in Fourier transform ion cyclotron resonance mass spectrometry. *Mass Spectrom. Reviews* (2014) 33:333-352 •
- Fourier transform ion cyclotron resonance mass spectrometry at the true cyclotron frequency. Mass Spectrom. Reviews (2021) •
- Enhanced Fourier transform for Orbitrap mass spectrometry. Int. J. Mass Spectrom. (2014) 369, 15, 16-22 •
- Performance evaluation of a high-field orbitrap mass analyzer. J. Amer. Soc. Mass Spectrom. (2009) 20, 1391-1396 •
- Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Amer. Soc. Mass Spectrom. (2009) 20, 1486-1495 •
- Absorption mode Fourier transform for FTMS: http://www.kilgourlab.com/absorption-mode-for-ft-ms/
- Transient-mediated simulations of FTMS isotopic distributions and mass spectra to guide experiment design and data analysis. J. Amer. Soc. Mass Spectrom. (2020) 31, 1927-1942
- Multiplexed MS of individual ions improves measurement of proteoforms and their complexes. DOI: 10.1038/s41592-020-0764-5
- Resource on Orbitrap models design and applications: https://planetorbitrap.com/

Quiz results, software access, questions, & ideas: tsybin@spectroswiss.ch

David Kilgour

Anton Kozhinov Konstantin Nagornov Oleg Yu. Tsybin

